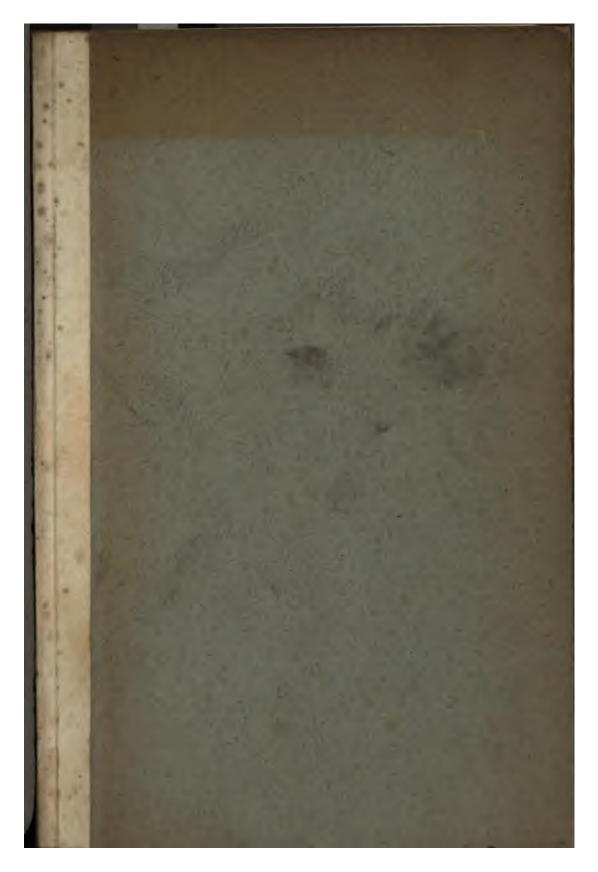


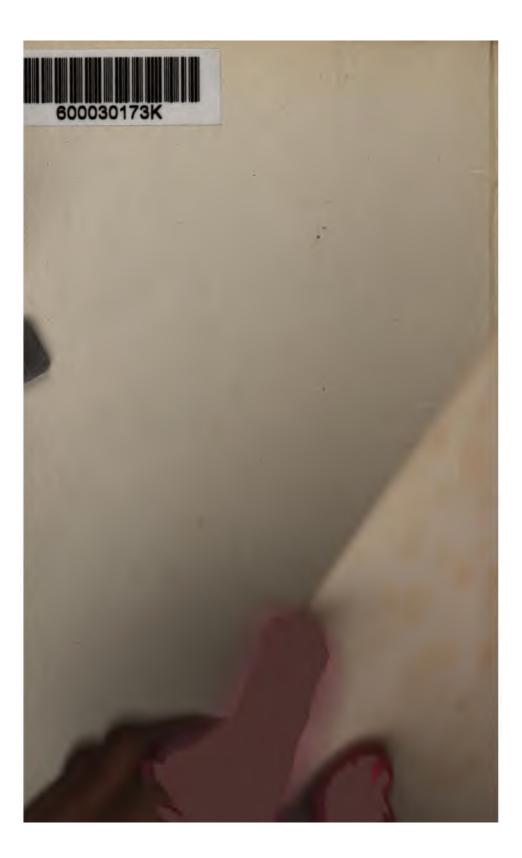
This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines


Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.


We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

CTION

Movements

ER JAW.

AN GUNNING, M.D.

W YORK MEDICAL JOURNAL, VOL. VI, 1867.

New Dork: RHEAD, SIMPSON & BOND.

1868.

ON THE

PHYSIOLOGICAL ACTION

OF THE

Muscles Concerned in the Movements

OF

THE LOWER JAW.

By Thomas Brian Gunning, M.D.

FROM No. 33 OF THE NEW YORK MEDICAL JOURNAL, Vol. VI, 1867.

New York:
MOORHEAD, SIMPSON & BOND.

1868.

ON THE

PHYSIOLOGICAL ACTION

OF THE

Muscles Concerned in the Movements

OF

THE LOWER JAW.

By Thomas Brian Gunning, M.D.

FROM No. 33 OF THE NEW YORK MEDICAL JOURNAL, VOL. VI, 1867.

New York:
MOORHEAD, SIMPSON & BOND.

1868.

16665.e.4

1. Centre of the condyle upon which the head rocks. 2. Sty'old process. 3. Condyle of Lower Jaw. 4. Neck of do. 5. Angle of do. 6. Eminentia Articularis. 7. Curve upon which the jaw opens.

A. External Pterygold. P. Upper head of do. C. Lower heal of do. D. Genio-Hyo-Glossus. E. Genio-Hyoid. F. Mylo-Hyoid. G. Hyo-Glossus. H. Middle Constrictor. J. Inferior do. K. Thyro-Hyoid. L. Sterno-Thyroid. M. Stylo-Hyoid. N. Stylo-Hyoil Ligament. O. Stylo-Maxillary Ligament. P. Complexus.

The chin is thrown up and the jaw and the curved line which indicates the position of the condyles of the head, are drawn small to show the muscles more distinctly. For the same purpose the Platysma-myoides and Masseter muscles are left out, and the insection of the Temporal and the origin of the Trapezius cut away. [The following paper is an extract from an extended memoir by Dr. Gunning on the Muscles of the Head, Neck, Jaw, and Palate. The portion here published is necessary to a complete understanding of his views on the "Diagnosis of Fractures of the Lower Jaw," which will subsequently appear, as promised in his previous article in the September number of the Journal for 1866. The part of the memoir relating to the sterno-cleido-mastoid is also included on account of the novelty of the views entertained regarding the action of this muscle.—Ed. New York Medical Journal.]

ON THE PHYSIOLOGICAL ACTION

OF THE

MUSCLES CONCERNED IN THE MOVEMENT

OF THE LOWER JAW.

THE necessity for muscles of great power, and acting upon long levers, to turn the head quickly, is demonstrated by the action of the sterno-cleido-mastoid. very quick turning of the head the muscle acts instantaneously; this, however, is but seldom. In the ordinary rotation of the head, it takes no part whatever, unless the head is obstructed as when lying down on the side. But if the head is turned far around, the muscle always acts firmly in the last part of the movement. This can be verified if the body is held upright and the forefinger placed in the interclavicular notch, with the thumb and second finger resting on the tendons of the muscles, and notice taken of the tightening and relaxation of the tendons. The comparative indifference of this muscle to the head's rotation can be more easily demonstrated in the evening, or when fatigued. From this it appears that the action of the sterno-mastoid in turning the head is of a very secondary character. acts only when the rotators of the atlas and occipital bone, and the splenius capitis and colli of the opposite side, are already in action, and even then only to assist in turning the head quickly, to carry it further round, or to overcome obstruction. When it assists in turning the head it draws one mastoid process forward, while the splenius pulls the other mastoid process backward.

The sterno-cleido-mastoid muscle is said to be a

rotator, a flexor, and an extensor of the head. What this flexing of the head means, in addition to lateral movement, may be learned by the following quotation. "The sterno-mastoid muscles, when both are brought into action, serve to depress the head upon the neck, and the neck upon the chest."* These views are also maintained by J. Cruveilhier + and may be accepted as those not only of the French anatomists and physiologists generally, but also of the German and English with few exceptions. Professor Henle, however, says positively that these muscles do not flex the head down in front, and that the muscles lift the head and bend the neck when the body is brought up in rising from the back. This is a great advance upon what is said by others, but beyond this he gives no intimation of understanding their peculiar and most important function.

The insertion of the sterno cleido-mastoid muscle is around the front of the mastoid process, and back along the superior curved line, about half the distance between the mastoid process and the centre of the occipital protuberance, while the front of the mastoid process is nearly always on a line with the centre of the condyles of the occipital bone (in rare instances, however, it is nearer the front of the condyle). The sterno-cleido-mastoid muscle is consequently inserted back of the centre upon which the head rocks (except in rare cases when a small, portion of the muscle is a little forward of it). Notwithstanding this, it is set down as rocking the head forward, and the action of the muscle in rising is brought forward to prove it. This experiment, however, if prop-

^{*}Gray's Anatomy. 2d Amer. edit., p. 256. Phil. 1865. † Traité d'Anatomie Descriptive. Troisième edit., tome deuxième, p. 173. Paris. 1851.

erly conducted and explained, will prove the contrary. If the experimenter, while lying flat on his back, with the forefinger resting in the interclavicular notch, and the thumb and second finger on the tendons, will raise his head and shoulders a little, he will find that the muscles are acting strongly; then, by staying in that position and rocking the head backward and forward, it will be felt that the muscles are unaffected in any part of their fibres, and that they pay no attention to the movement of the head, neither the tendons on the sternal portions nor those on the clavicles being relaxed for a moment. Then sit up, throw the head forward sufficiently to relax the tendons, and rock the head as before; it will now be found that the tendons remain relaxed, showing that tightness of the tendons did not conceal action of the muscles in the first experiment, and demonstrating that the sterno-cleido-mastoid muscles do not "serve to depress the head upon the neck." On bringing the head forward it will be found that it is assisted by the muscles only until the head comes to its centre of balance, when the tendons relax and remain so, even when the chin touches the breast. But if the head is obstructed in this downward movement, these muscles will then assist to bring it down in front and to hold it there. The sterno-cleido-mastoid muscles do not, however, in this rock the head upon the atlas, but bring the atlas forward. Neither are they "extensors of the head" in the sense indicated by the books, which seems at first sight to accord more with their insertions back of the centre of the condyles. But the insertion is so peculiar that it requires careful consideration to determine how the muscles affect the head when the

sternal and clavicular portions of both sides are in ac-The mastoid process is always below the superior curved line upon which the back part of the muscle is inserted. When the process is large it may be more than half an inch below it, although much less when the process is small, as in childhood before the cells are developed. Moreover, the uniformity of position between the mastoid processes and the condyles horizontally is not met with in their vertical relation, the condyles being on some skulls more than half an inch lower than the mastoid processes, while on others the processes are as much below the condyles, the large proportion being between these extremes. These variations go far to show that the sterno-mastoid muscles are not intended to rock the head backward, for when the mastoid process is much lower than the condyles, and especially when it is large and projects forward somewhat, to correspond to the direction of the muscle, it follows that as the head is pulled down by the trapezii, etc., the mastoid processes go upward and forward; consequently, if the sterno-cleido-mastoids were to act to bring the head down behind, the portion on the mastoid process—the strongest part of the muscle—would hold the head down in front, probably as much as that on the occipital bone would pull it down behind. their action can be tested by lying down so as to remove the necessity for action of the muscles to hold the atlas. In this position (care being taken not to lift the atlas or neck) the sternal portion of the muscles will not act in concert with the other muscles to rock the head back, even if the whole weight of the body is thrown upon the back of the head, and I have been unable to find any action in the clavicular portion, although the action of this part of the muscle is so delicate and prompt that it can be distinctly felt when the foot is raised in walking, the head and body being then thrown over to the other side to restore the balance. Further, when the sterno-cleido-mastoid and the splenius of the same side are acting in concert to pull the head down to the shoulder, no backward movement of the head is discoverable. This is conclusive, for both these muscles having similar insertions, if one rocks the head back the other must, and their combined action would be manifest if they exerted it.

It has been previously shown that this muscle acts as a rotator, but only by sometimes assisting the splenius, etc., of the opposite side, and as a lateral flexor, in connection with the splenius of the same side, but only when the head is obstructed, and then generally by its clavicular portion, the sternal acting only in extreme necessity. It is now seen that it does not flex the head down in front, that is upon the atlas at all, and that its action as an extensor of the head can not be demonstrat-The proper function of the sterno-cleido-mastoids when acting in concert, is to give anterior support to the top of the spine, the splenii muscles giving posterior sup-This may be easily proved by sitting down and watching the tendons. When the head is back of its centre of support both the sternal and clavicular tendons are tightened, when rising they become tenser until the head is started, as it comes into balance they relax. On sitting down, the tendons tighten to check the head as it goes back out of balance. Sudden forward movements tighten them until the head is in motion, they

then slacken as the head is forward of the centre and the atlas supported by the *splenii* muscles. If the head is in balance any pressure upon the forehead brings the muscles into action to preserve it. The action of the muscles in these movements is but a modification of the service rendered by them in raising the head from the horizontal position, in doing which the muscles at first support more than the weight of the head, for in supporting the mastoid processes they support the atlas, and make it a fulcrum between the bulk of the head and the counter-balance at the other end of the lever, but as the body comes upright and the head into balance, the strain upon the sterno-mastoid muscles gradually diminishes, until the head is held by the posterior muscles, when the spine bears all the weight.

[A reference to the figure (frontispiece) will render this explanation more at parent. The same figure also illustrates the action of the muscles of the lower jaw, and confirms the opinions expressed in the subsequent portions of this paper.]

The hyoid bone, in addition to the muscles which pass to it from parts above the lower border of the jaw, gives attachment to others, which pass up the front of the neck below the jaw. Of these the sterno-thyroid arises close to the centre of the posterior surface of the upper bone of the sternum, and falling back somewhat as it passes up, is inserted into the side of the thyroid cartilage, from whence the thyro-hyoid (appearing like a continuation of the preceding) goes up and is inserted into the body and greater cornu of the hyoid bone. The sterno-hyoid arises from the sternum and end of the clavicle and is inserted into the lower border of the body of the hyoid bone. It is separated considerably from its fellow at its origin, but crosses the sterno-thyroid and approaches it in the middle of its course; it leaves the front of the thyroid cartilage uncovered.

The omo-hyoid arises from the upper border of the scapula, and occasionally from the transverse ligament which crosses the supra-scapular notch. It passes across and up the side of the neck to be inserted into the body of the hyoid bone. It crosses over the scaleni and thyro-hyoid but under the trapezius and sterno-cleido-mastoid muscles. It is a double-bellied muscle united by a tendon which is held down by a process of the deep cervical fascia. The first portion is nearly horizontal in its course, but underneath the sterno-mastoid muscle, where the cervical fascia passes around the tendon, it turns up so that the second portion is nearly vertical in its course to the hyoid bone. These are the directions of the muscle when at rest, but when active it approaches the line of its attachments and the cervical fascia is drawn upward and backward.

The digastric, another double-bellied muscle, has peculiar relations with the preceding. It arises from the digastric notch, on the inner side of the mastoid process of the temporal bone, and passes downward, forward, and inward, to the side of the hyoid bone, where its rounded tendon (after passing through the stylo-hyoid muscle) is held by an aponeurotic loop in connection with the side of the body of the hyoid bone, above the insertion of the omo-hyoid. The muscle then passes forward and is inserted into a large depression on the inner side of the lower border of the jaw close to the symphysis. The tendon which divides the posterior and longer belly from the anterior, gives off a large aponeurotic layer, which is attached to the body and great cornu of the hyoid bone; it is termed the suprahyoid aponeurosis. It forms a strong layer of fascia between the anterior portions of the two muscles, and a firm investment for the other muscles of this region. This muscle is peculiar in not being inserted into the hyoid bone, but attached to it by a loop; this allows the muscle to act without interfering too much with the hyoid bone. The digastric muscle has not, however, that freedom which is attributed to it as a reflected cord, for its aponeurotic connection with the hyoid bone and adjoining muscles prevents it from sliding through the loop which attaches it to the hyoid bone, except to a very limited extent. This powerful muscle exerts great influence from the various and important movements in which it takes part.

The service supposed to be rendered by the foregoing muscles is shown by the following selections:

J. CRUVEILHIER says: "The sterno-hyoid, the omo-hyoid, the sterno-thyroid, and the thyro-hyoid are the simplest in their structure and the simplest in their action; all coöperate to the lowering of the jaw. Moreover, if the jaw is fixed, they tend to flex the head."*

SAPPEY says that "the genio-hyoid raises the hyoid bone when the jaw is fixed, and lowers the jaw when the hyoid bone is fixed, and flexes the head when both are fixed."†

J. CRUVEILHIER says of the digastric: "If the hyoid bone is fixed the posterior belly becomes the lowerer of the jaw, in consequence of the reflection of the

^{*} Traité d'Anatomie Descriptive. 3me ed., tome 2me, p. 179.

[†] Traité d'Anatomie Descriptive. Tome 1, première partie, p. 213. Paris. 1850.

muscle; the anterior and posterior bellies can throw the head backward."*

Jamain says: "If the hyoid bone is fixed, the digastric cooperates in lowering of the jaw."

Todd's Cyclopædia says: "When the hyoid bone is fixed by its depressors, and perhaps in some degree retracted by the joint actions of the posterior belly of the digastric and of the omo-hyoid, the anterior belly, both passively as a reflected cord, and actively in virtue of its muscular fibres, depresses the lower jaw, and opens the mouth."

"Chief action of the omo-hyoids is to tighten the cervical fascia during deglutition; they are also capable of depressing the hyoid bone."

GRAY'S Anatomy says of the digastric, mylo-hyoid, and genio hyoid: "When the hyoid bone is fixed by its depressors and those of the larynx they depress the lower jaw;" and further, that in deglutition "the anterior belly of the digastric carries the hyoid bone, etc., upward and forward and the posterior belly upward and backward," and says of the platysma-myoides: "Its anterior portion, the thickest part of the muscle, depresses the lower jaw."

Hence says: "The platysma-myoides are not depressors of the jaw."

^{*} Traité d'Anatomie Descriptive. Troisième edit., tome deuxième. p. 182. Paris. 1851.

[†] Nouveau Traité Élementaire d'Anatomie Descriptive. p. 180. Paris. 1853.

[‡] Todd's Cyclopædia. Vol. III. p. 564.

[|] Ibid. p. 563.

[¶] Gray's Anatomy. 2d American Edition. p. 260.

[&]amp; Ibid. p. 256.

DUCHENNE says: "Its action being exhausted by the mobility of the integuments of the face, the neck and the chest, it has no longer sufficient strength to depress the lower jaw."*

Cruveilhier says: "The platysmas are sometimes unequal in strength."

ZIEMSSEN says: "The muscle is sometimes absent."

The absence of the platysma-myoides in some cases and its inequality in others proves that it is not of any consequence in depressing the jaw, which is a movement requiring great promptness and exactitude. It may be held between the thumb and finger, near the front of the jaw, and if care is taken to discriminate between it and the integument, it may be felt that the muscle pays no attention to the movement of the jaw.

The digastric muscle is set down as drawing the hyoid bone backward and forward in deglutition, and as depressing the jaw by acting as "a reflected cord." These services are inconsistent with each other and with the anatomy of the parts. If it were fixed so as to draw the bone backward and forward, it could not slide and be of serviceas a "reflected cord" sufficiently to lower the jaw. To do the latter the anterior belly should be inserted higher up the jaw, while a long unrestricted tendon of the muscle should run through a fixed loop on the lower border of the hyoid bone, which last should also be freed from the styloid ligaments, and be drawn down half-way to the sternum every time the jaw opened wide, and proportionally for less opening.

^{*} De l'Electrisation Localisée. p. 380. Paris. 1855.

[†] Traité d'Anatomie Descriptive. Troisième edit., tome deuxième. p. 166. Paris. 1851.

In respect to the united action of both bellies drawing the head backward, it is only necessary to say that the origin of the digastric is partly in front of a line drawn across just behind the condyles of the occipital bone; it could not, therefore, draw the head back appreciably even if its insertion were directly under its origin. It is consequently a mistake to suppose it can do so when its direction forward is so nearly horizontal. In fact this muscle is the great agent in drawing the head The posterior belly slants down to the hyoid forward. bone, but the anterior is nearly horizontal in its course, and when the muscle acts it tends to the line of its attachments by drawing or endeavoring to draw the hyoid bone upward unless the jaw is much depressed, when, as the muscle is straight, or nearly so, it has no power to raise the hyoid bone. But in several important services the digastric acts in concert with the omo-hyoid In this way the muscles passing from the hyoid bone to the front of the jaw, including the anterior belly of the digastric, are as effectually antagonized as if a powerful muscle passed from each side of the hyoid bone to the opposite cervical vertebræ, with the advantage of greater length of muscle to contract, and easier adaptation to the movements of the jaw; and the muscles in front of the hyoid bone act, when necessary, in alternation with the omo-hyoid and the posterior belly of the digastric. More frequently, however, the anterior belly of the digastric acts with the posterior belly and the omo-hyoid, for they keep the head upright. In doing this the omo-hyoid muscle and the posterior belly of the digastric draw or hold the hyoid bone back, while

the anterior belly of the digastric brings in the chin, and the temporal and other elevators of the jaw draw the head forward; in this way the digastric acts on a long lever, as the head rocks on a centre, but a little below the entrance of the external ear. These muscles are always active during forward or backward movements of the body or head. They do for the head what the sternomastoid muscles do for the spine, and their action can be felt easily with the finger, in sitting down or rising up, etc. They are also powerful rotators of the head, and the action of the omo-hyoid is singularly quick in sudden turns of the head (as with the sterno-mastoid muscles) the digastric being useful in assisting to keep the hyoid bone up in place, it being held laterally by the aponeurosis and probably by the mylo-hyoid muscle.

If the end of the finger is placed just behind the origin of the cleido-mastoid during these movements, the omo-hyoid will be felt rising above the clavicle, and carrying the cervical fascia upward and backward; and if a finger is placed behind the mastoid process so as to cover the end of the digastric notch, the digastric muscle will be felt acting in concert with the omo-hyoid, and the anterior belly can be felt between the jaw and hyoid bone. The peculiar attachment of the digastric can now be appreciated, as the hyoid bone is left sufficiently free in its various movements, although it is at the same time the centre of control and support to the head. The importance of this support to the head can hardly be over-estimated, for the weight of the head beyond the atlas must be balanced. This the digastric and omo-hyoid muscles do effectually by acting upon

the jaw, which is a lever, in length about two-thirds of the height of the head above the atlas. The points from which these muscles act are the mastoid process and the shoulder; the vertex of their angle being in the hyoid bone, from whence they draw in the chin; in this direction they are very active and powerful. They not only balance the head in locomotion and leave the other muscles free to act in deglutition, vocalization, and articulation, but give them important assistance.

The following quotations show the opinions entertained as to the action of the muscles which move the lower jaw:

GRAY's Anatomy says: "The temporal, mastoid Seter and internal pterygoid raise the lower jaw against the upper with great force. The two latter muscles, from the obliquity in the direction of their fibres, assist the external pterygoid in drawing the lower jaw forward upon the upper, the jaw being drawn back again by the deep fibres of the masseter, and posterior fibres of the temporal. The external pterygoid muscles are the direct agents in the trituration of the food, drawing the lower jaw directly forward, so as to make the lower jaw project beyond the upper. If the muscle of one side acts, the corresponding side of the jaw is drawn forward, and the other condyle remaining fixed, the symphysis deviates to the opposite side. The alternation of these movements on the two sides produces trituration." *

TODD & BOWMAN'S Physiological Anatomy, part iii.

^{*}Gray's Anatomy, Descriptive and Surgical. 2d American Edition. p. 252. Phila. 1865.

p. 539, says: "The external pterygoid neither raises or depresses the lower jaw."

My own views as to these muscles differ materially on some points from those expressed in these quotations. The position of the masseter is too well known to need particular description. The fibres of the deep portion have a more perpendicular direction than those of the superficial portion, the last passing backward as much as downward. The deep portion draws the jaw upward and backward, the superficial portion upward and forward. The internal pterygoid has the same general direction as the superficial portion of the masseter, excepting that as it arises from the pterygoid fossa it passes considerably outward to reach its insertion on the inner side of the ramus and angle of the jaw. It has, therefore, not only the upward and forward motion of the superficial portion of the masseter, but also lateral power over the jaw.

These muscles not only raise the jaw and teeth, when cutting with the incisors and crushing with the molars, but are also the main movers of the jaw in trituration. In cutting they bring the jaw forward bodily, in triturating they exert more forward and lateral action on one side than on the other; by this the jaw is thrown over to the opposite side and then drawn in and carried out continuously on that side, and not carried over to the other side. It is a mistake to suppose that trituration of the food is effected by the alternate action of the muscles of both sides. When the jaw and teeth are perfect, the teeth of one side only are used, until the muscles tire, perhaps, and then those of the other side are resorted

to. If the teeth are tender, badly placed, or deficient on one side, trituration is performed on the other only.

The temporal muscle, which covers so large a portion of the side of the head, and is strongly inserted into the inner surface, apex and anterior border of the coronoid process of the jaw, pulls its insertion upward and backward, and assists the masseter and internal pterygoid muscles in cutting, crushing and triturating the food.

The external pterygoid is a short, thick muscle, which arises from the pterygoid ridge on the great wing of the sphenoid, and the portion of bone included between it and the base of the pterygoid process, from the outer surface of the external pterygoid plate and the tuberosity of the palate and superior maxillary bones. It arises in two portions separated by a short interval; they both pass outward and backward and are inserted into a depression in front of the neck of the condyles of the lower jaw, and into the corresponding part of the interarticular fibro-cartilage. The separate portions join and form one muscle previous to their insertion; the middle fibres being horizontal, but as the origin of the muscle is very wide vertically, the upper portion descends in passing back, while the lower ascends. This strong and beautiful muscle has, from its peculiar situation, great influence over the jaw. The origin being more internal than the insertion, gives the muscle control over the condyles laterally, by which they are held firmly in the glenoid cavities, and the great strength of the muscle tends to keep the condyles from being driven back by falls, or blows upon the chin, which otherwise might occur easily, as the glenoid fossæ are very shallow.

A more prominent service of this muscle is when it brings the control forward either on its own side alone, as in trimusation, or with its fallow of the opposite side, as in cutting by the indisors. In these movements it acts in concert with other motors of the iss. To consider it especially the trimusaling muscle is no more correct than to suppose that when trimusaling with a pestle in a mortar the trimus and foreinger which are further from the grinding surfaces; are the trimustors rather than the fingers below.

The external proposition muscle controls the upper end of the jaw in concert with the respect, while the muscles attached to the body have especial control below, and by the concerted action of all, power and steadiness are secured in the complicated movements of the jaw, and of the lower teeth against the upper. The external pterigoid muscles have one office peculiar to themselves, that of holding the condyles fixed in any part of the glenoid cavities, to which they may be drawn in movements of the jaw. For this service they are admirably fitted by the great width of their origin, which enables them to brace the condyles so firmly against the parts above and in front of them, that the jaw is fixed, even when wide open, as firm as if the condyles were hinged in that position.

The eminentia articularis, the rounded projection which forms the front of the glenoid fossa, is indispensable to this fixation of the condyle, and as the condyle in coming forward mounts this eminence, the jaw, while going down in front, is also carried down bodily, by which the back teeth of the lower and upper jaws

are widely separated. These advantages are gained while the centre upon which the jaw turns is three-fifths down toward the angle. This may be tested by placing the hand and wrist around the back of the neck and applying the end of the little finger to the back of the ramus, and finding the point upon which it turns, which is probably near the insertion of the internal lateral ligament. By this arrangement the jaw is opened promptly and widely, without interfering with the parts behind, which would be injuriously pressed upon if the condyle remained still and the angle went back far enough to open the jaw wide.

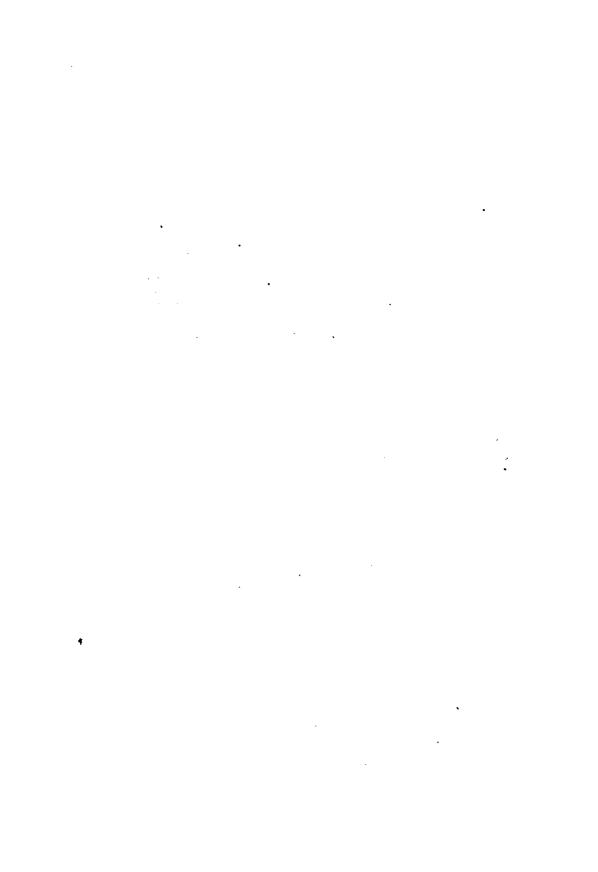
The external pterygoid is now to be spoken of in a service in which the action of the muscle is greater in range, frequency and importance than in any other, and in which it has never before been recognized, that of opening the mouth. This muscle antagonizes the temporal, masseter and internal pterygoid muscles, and is, especially by its lower head, the depressor of the lower jaw. It does this alone when necessary, without assistance from any other muscle. This may be proved by bracing the arm against the breast and applying the thumb firmly to the chin; or better, by placing the jaw flat on the mantel, or any fixed support, then on opening the mouth the head will go backward, being drawn back by the external pterygoids whose insertions in the condyles are fixed by support of the jaw.

The action of the external pterygoid muscles in opening the jaw is similar to their action when the jaw is brought forward to cut with the incisors, the difference in effect being produced by other muscles; the temporals probably act similarly in both movements. The masseters and internal pterygoids, however, must relax in the opening of the jaw instead of assisting to carry it forward as in cutting, while the digastrics, which relax in the forward movement of the jaw, undoubtedly assist to draw the chin back in gaping, vomiting, and in very wide opening of the mouth when voluntary. When not otherwise employed, it is probable that they always assist in opening the jaw, as they are admirably fitted for carrying the chin back, when the condyle is going forward. It is not so clear that they could carry it back readily if the condyles were not at the same time pulled forward. For, when the chin points down very much (as in some persons even with the jaw closed) the digastric muscle forms but a slight angle at the loop, and decided action of it in such cases would perhaps tend to keep the condyles of the jaw back in the glenoid cavity from the start, or soon after, as the opening of the jaw would straighten the digastric so much that it would have but little power to carry the chin back. Even in cases where the anterior belly of the digastric ascends from its loop to the chin, so that it has some vertical direction to favor it, and supposing it to be assisted by strong back fibres in the mylo-hyoid muscle, it is not possible that the condyle could release itself from the eminentia articularis, and unless it did so and came forward, the jaw could open only to a trifling extent, for it would act as if hinged in the glenoid fossæ. But with the external pterygoids drawing the condyles forward, the jaw opens, as upon a centre in the ramus, and the question arises as to what the jaw really turns upon.

The 'masseter and internal pterygoid muscles hold the angles very much as if a sling were passed around them, and if it were not for the angle going back it might be said that the jaw turned down upon the centre, supported by these muscles in connection with the stylo-maxillary ligament, which is also inserted into the angle of the jaw. Under all the circumstances the insertion of the internal lateral ligament around the inferior margin of the dental foramen marks the centre upon which the jaw opens with sufficient exactness. This ligament is a thin aponeurotic expansion, which descends perpendicularly from the extremity of the spinous process of the sphenoid bone, and cannot properly be considered the special support of the jaw in its downward and upward movements. It is more likely that the pterygo-maxillary ligament also influences the movement, and that all the ligaments and muscles inserted into this part of the bone are instrumental in determining the centre upon which the jaw opens.

The shape of the jaw, whether congenital, or modified by age or accident, may also vary the location of the centre somewhat; but at all ages the condyles must come forward to open the jaw effectually. This can be done only by the external pterygoid muscles, whose special office is to move and also fix the condyles, and in connection with the temporal and other elevators, the jaw also. In this way only can the digastrics and associate muscles act efficiently in their most important functions, otherwise they would be disturbed by undue movement of the jaw. In certain cases, however, these

muscles, as before stated, assist in moving and holding the jaw.


When the external pterygoids throw the jaw wide open, the chin is much below the hyoid bone, but controlled by the anterior bellies of the digastric muscles, the hyoid bone being fixed by the posterior bellies and by the omo-hyoid muscles, which can now be felt in action. Consequently the three extremities of the jaw, the chin, the angle, and the condyle, have each diverging or converging muscular support. The digastrics go to the chin, the internal pterygoids go to the angles, and the external pterygoids to the condyles. This arrangement of the muscles in connection with its ligaments holds the jaw firm in all its complicated movements.

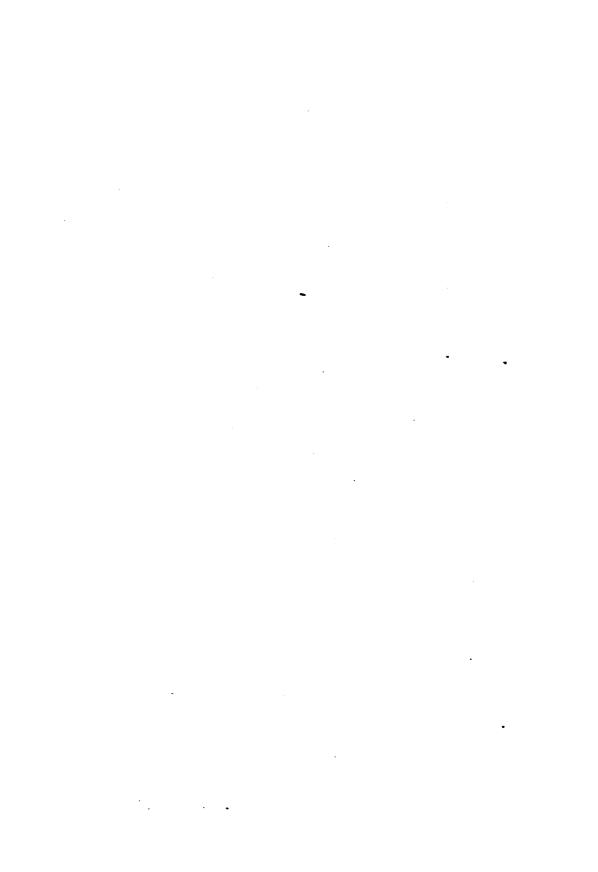
It has been shown that the sterno-cleido-mastoid muscles are not merely rotators of the head, but that they give anterior support to the atlas, while the splenii and other muscles give posterior support, and that in combination they support it laterally. This support is so complete that the head is held securely in all positions. The muscles which give form to the neck, and support and move the spine and head, are so arranged as to leave the front of the spine free for the tongue, larynx, and trachea, with their special muscles, etc., and for nerves, blood vessels, and glands of prime necessity.

These important parts are shut in and protected by the lower jaw, which gives attachment to muscles indispensable to those organs in the performance of their functions, while its own movements are in strict subordination to them. By this respiration is secured from interruption at all times, and occasionally made tributary to vocalization and articulation, and the vocal tube modified and moved with wonderful delicacy and energy in its participation in these functions, and in accordance with those of mastication and deglutition.

The lower jaw is also the great lever by which the head is held upright.

These explanations of the physiological action of the muscles which control and influence the lower jaw, prepare the way for the diagnosis of its fractures, upon which I purpose to write hereafter.


•	- .		
	·		
		•	



•		
		•

·		
	·	



	-			
		-		
			•	
		·		
	•			

·	•	
	٠	

• . • •

`			٠	
				÷
•		·		
		•		
	·	•		

		,	

	,	
		·

•		

	÷		
·			
-			
		·	

		•	
÷			
·			
		·	
	٠		
	•		

		·		
	•			
		·		
		·		

			·
			;
•			
			1
		·	
	·		

